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Abstract

In an effort to understand the current extent of the
computer virus problem and predict its future course,
we have conducted a statistical analysis of computer
virus incidents in a large, stable sample population of
PC's and developed new epidemiological models of com-
puter virus spread. Only a small fraction of all known
viruses have appeared in real incidents, partly because
many viruses are below the theoretical epidemic thresh-
old. The observed sub-exponential rate of viral spread
can be explained by models of localized software ez-
change. A surprisingly small fraction of machines
in well-protected business environments are infected.
This may be ezxplained by a model in which, once a
machine is found to be infected, neighboring machines
are checked for viruses. This “kill signal” idea could be
implemented in networks to greatly reduce the threat of
viral spread. A similar principle has been incorporated
into a cost-effective anti-virus policy for organizations
which works quite well in practice.

1 Introduction

Rational anti-virus policies must be based upon ac-
curate information about computer virus prevalence
and a solid understanding of the factors which govern
it. These two essential ingredients have been sadly
lacking.

A few years ago, many people severely underes-
timated the magnitude of the computer virus prob-
lem — even claiming that viruses were a myth. In
1992, the opposite myth of Michelangelic Armaged-
don was promulgated by the media.

The frenzy over the Michelangelo virus was a dra-
matic illustration of the general unavailability of in-
formation on virus prevalence. Estimates of the num-
ber of computers infected by Michelangelo ranged over
three orders of magnitude (to as high as 5 million
worldwide! [1]), contributing greatly to widespread
concern and handsome profits for anti-virus software
vendors.

Recently, Certus [2] and Dataquest [3] have at-
tempted to measure the extent of the computer virus
problem by surveying hundreds of business, govern-
ment, and educational organizations in the United
States. They made some interesting discoveries — for
example, the minimal extent to which most organiza-
tions are armed against computer viruses. Unfortu-
nately, however, a number of fundamental conceptual
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and methodological problems prevented them from
getting a clear picture of the prevalence of computer
viruses. The substantial overestimates of the num-
ber of Michelangelo infections can almost certainly be
traced to an understandable misinterpretation of some
of the Dataquest results by the media and by some
prominent people in the anti-virus industry [4, 5].

Given that the current prevalence of computer
viruses has been subject to tremendous exaggeration
in both directions, it should hardly be surprising that
predictions of their future prevalence have been sub-
ject to exaggeration as well. In March, 1990, a well-
publicized claim was made that viruses would increase
in number exponentially, and that 8 million PCs would
be infected by March, 1992 [2]. Based on this theory,
it was concluded that virus scanning was ineffectual,
and that the only solutions were either broad usage of
restricted function computers or a massive campaign
to strictly control the execution of all software on all
of the world’s PCs.

QOur own observations of real-world virus incidents
on a large, stable population of PCs and our theoret-
ical modeling of computer virus spread reveal a much
more realistic picture of the situation, and provide a
much different, less drastic set of recommendations for
dealing with the problem.

In Section 2, we review briefly some of our previ-
ous theoretical work. This provides the context for
two new epidemiological models described in Section
3. Both of these models serve two purposes: they

‘may help to explain some of the observations presented

in Section 4, and they lead to prescriptions for novel
anti-virus technologies and policies. In Section 4, we
present some of our real-world virus statistics, inter-
preting them in the light of our theoretical results. We
summarize our findings and discuss future directions
in Section 5.

2 Epidemiological Models

In our modeling of computer virus spread [6, 7], we
have borrowed some important concepts and simplifi-
cations from the well-established field of mathematical
epidemiology [8] 1.

In particular, we ignore the details of infection
within an individual (in our case, a computer system,

IThe reader can consult reference [6] for a critique of other
attempts at modeling virus spread, a brief review of mathemat-
ical epidemiology, and a more extensive list of references than
is provided here.



along with all associated storage media), considering
it to be in one of a small number of discrete states,
such as infected or susceptible. Furthermore, we ig-
nore the details of how disease is transmitted among
individuals. We assume that, from time to time, in-
dividuals have “adequate contacts” with one another,
resulting in transmission of the disease if one individ-
ual is infected and the other is susceptible. The details
of what constitutes adequate contact vary from one
disease (or computer virus) to another, but we simply
assume that the total rate of adequate contacts be-
tween one individual and the rest of society is 5. We
also assume that there is some death rate § at which
the individual is cured of the infection 2.

For computer viruses, the rate of adequate con-
tact B is influenced by anything that promotes or hin-
ders viral replication, including mechanisms by which
the virus infects programs, the rate of software trans-
fer among computers, and precautions taken by users
such as the use of a write-protect tab or integrity main-
tenance systems. The death rate § is influenced by
intrinsic characteristics of the virus which might dis-
guise or reveal its presence, user awareness and vigi-
lance, and detection (and subsequent removal) of the
virus by anti-virus software.

In addition to borrowing ideas from mathematical
epidemiology, we have extended it by incorporating
topological effects which turn out to be quite impor-
tant [6, 7]. In the homogeneous mixing assumption,
every individual in the population is assumed to be
equally likely to infect or to be infected by every other
individual. Our work has shown that this approxima-
tion works well when each individual has many ran-
domized contacts with others. However, if the number
of contacts that a typical individual has with others
is fairly small and/or the pattern of contacts is more
or less localized, the approximation fails terribly. We
suspect that the majority of today’s computer popu-
lations are characterized by a degree of sparsity and
locality that invalidates the homogeneous mixing ap-
proximation.

Figure 1 exemplifies a situation in which individ-
uals (represented by nodes in the graph) are con-
nected in both a sparse and a local manner. It can
be thought of as representing a likely scenario in
which workers within one group exchange software fre-
quently among themselves, somewhat less frequently
with other members of their department, and even
less frequently with users in other companies, univer-
sities, or countries. The resulting topology contains
random hierarchically-nested clusters with occasional
cross-links. It is said to be sparse because each indi-
vidual has adequate contacts (represented by edges of
the graph) with just a few others. In other words, the
average degree of the nodes in the graph is some small
constant independent of the size of the graph. It is
said to be local because, if nodes B and C are neigh-
bors of (i.e. connected to) A, the probability for B
and C' to be neighbors is significantly enhanced over
what it would be in a random graph.

By analyzing and simulating viral spread on a va-

20r possibly dies of it, in the case of a biological host.

Figure 1: Snapshot of viral-spread simulation running on sparsely-
connected, hierarchically-clustered topology. Each individual, rep-
resented by a node, has adequate contact with an average of three
others. White and black nodes represent uninfected and infected in-
dividuals, respectively. The pattern of exchange is fairly localized,
and therefore so is the pattern of infection.

riety of topological structures, we have reached the
following conclusions 3:

1. In homogeneous systems (fully-connected
graphs), an epidemic threshold occurs when
p=%=1 When > 6 (p <1), the sys-
tem is above the “epidemic threshold”, and
an epidemic occurs with probability 1 — p.
If it does occur, the number of infections
increases exponentially (~ e(#=9?) eventu-
ally saturating at an equilibrium of N(1- p),
where N is the number of nodes. Below the
epidemic threshold (8 < 6; p > 1), small
outbreaks may occur whenever the disease is
introduced into the population, but they can
not be sustained for long.

2. In sparse systems, the epidemic threshold
still exists, but the critical ratio pihreshold 18
diminished to some value less than 1. As
the average degree of nodes in the graph di-
minishes, s0 does Pihreshold, and the proba-
bility of an epidemic diminishes (dropping to
2er0 if Pyhreshold Slips below p). Even when
an epidemic does occur, the growth rate is
slowed, and the equilibrium level of infection
depressed below what it would be in the cor-
responding homogeneous system.

3. In localized systems, the epidemic threshold
and the equilibrium level of infection may
or may not be affected. What is certain is
that the growth in the number of infections
with time is slowed qualitatively, becoming
strongly sub-exponential.

3These conclusions hold when individuals become suscepti-
ble immediately after they are cured of the disease.



3 Two New Models

In this section, we present two new epidemiological
models which may help to explain some observed phe-
nomena, and which suggest some new ideas which can
be incorporated into anti-virus technology and poli-
cies.

3.1 Kill Signals

In all epidemiological models of which we are aware,
an individual’s cure takes place independently of that
of any other individual. However, consider the follow-
ing scenario. One day, Alice discovers that one of the
programs she uses on her PC is infected with a virus.
She eradicates it by any one of a number of procedures.
In most models, this would be the end of the story.
However, in this case Alice takes it upon herself to in-
form her friends Bob, Carol, and Dave, with whom she
remembers having exchanged software sometime dur-
ing the last few weeks. Bob already has a virus scan-
ner, so he runs it and finds that, lo and behold, he has
the virus, too. Carol and Dave install anti-virus soft-
ware on their machines, whereupon Carol finds that
she is infected, too. Fortunately for Dave, he turns
out not to be infected. Bob and Carol, after clean-
ing up their PCs and diskettes, follow Alice’s example
and tell their friends, and the process continues until
finally no one who receives the “kill signal” (the warn-
ing about possible viral infection) finds that they have
the virus.

Various assumptions can be made about how the
kill signal works. If one assumes that the kill signal
is delivered and acted upon much more rapidly than
the virus can spread, it can be shown that the virus
can be pushed below the epidemic threshold even if
the infected individual only delivers the kill signal to
a fraction of its associates.

Figure 2 summarizes the results of nearly 200,000
simulation runs on random graphs of 100 nodes with
average degree 10 (i.e. on average, each node had 10
neighbors). The ratio p was fixed at 0.2. At the begin-
ning of each simulation run, an entirely new random
graph was generated, and one randomly-chosen node
was infected initially. At the moment that a node be-
came cured, it tried to send a kill signal to each of
its neighbors, which received it with probability pyin.
Upon successful receipt of the signal, an infected node
would immediately become cured and would instantly
try to send a kill signal to each of its neighbors. Any
uninfected node would remain uninfected, and would
not send the signal on to its neighbors. Given the
relatively high degree of the graph and the random
nature of the connections, the homogeneous approxi-
mation gives a good estimate of the epidemic proba-
bility when pijy = 0: 1 — p = 0.8. As the kill signal
probability pyiy is increased, the epidemic probability
remains high until a sharp threshold is reached near
pxin = 0.25, beyond which the probability for there
to be an epidemic drops abruptly to zero. In other
words, for these parameters, extinction of the virus is
inevitable if more than 2.5 or 3 out of a typical node’s
10 neighbors receive and heed the kill signal.

What if the kill signal is not transmitted instanta-
neously? One way to model this is to treat the kill sig-
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Figure 2: Kill signals can be extremely effective, even when only
a fraction of the neighbors of an infected node receive and heed
them. Each point summarizes the result of 2500 simulation runs on
random graphs of 100 nodes with average degree 10, and indicates
the fraction of those runs which resulted in epidemics. The ratio p
was 0.2.

nal as an epi-epidemic — a sort of anti-virus epidemic
of species K riding on the back of the virus epidemic
(species V). We can then assign the kill signal K its
own intrinsic “adequate contact” and “death” rates.
Specifically, a kill signal is born at a node whenever
the virus dies there. Adequate contact among nodes
occurs at the rate 8k. In order for adequate contact
to result in infection by a K, the intended victim must
be infected with V. In order to prevent the kill signal
from ricocheting around the system and using up com-
putational resources long after V' has been eradicated,
we introduce a death rate §x. The properties of V
remain essentially the same as in standard models; V
can only infect nodes that are not infected with K or
with V.

In a homogeneous system, deterministic analysis
(valid for sufficiently large systems) leads to the fol-
lowing coupled pair of nonlinear differential equations:

z—;} = pv(l—v—=k)—bv— Pgvk (1)
dk
il Brvk — 6k + bv

Equation 1 can be solved numerically to yield v(¢)
and k(t), the fraction of nodes occupied by V and K,
respectively.

Analysis of the solution shows that the epidemic
threshold for the virus is unaffected by the kill signal
parameters; it remains at pP¢nreshold = 1. The kill sig-
nal has no intrinsic epidemic threshold; it can survive
as long as there are viruses upon which to feed, re-
gardless of the relative values of 6k and fx. Unlike
the first type of kill signal, this second type fails to
alter the epidemic threshold. However, it can still be
quite effective. By setting the left hand sides of Eq. 1
to zero, one can show that the equilibrium virus pop-
ulation can be made arbitrarily small either by setting
6k sufficiently low or by setting Sk sufficiently high.



The kill signal parameters §x and S have several
interesting limits. The limit 6x — 0 has a simple in-
terpretation: each individual acquires permanent im-
munity after exposure to and recovery from the virus
V. The standard SIR models of mathematical epi-
demiology (susceptible — infected — recovered) are
obtained by further taking the limit Sx — 0. In this
case, K isn’t really a signal passed among neighbor-
ing nodes; it just appears spontaneously whenever a
node is cured of V and remains there for eternity, pro-
tecting that node from infection by V. In such mod-
els, the equilibrium virus population is always zero;
the question of interest is how many nodes ever be-
come infected; this is determined by the virus rates 3
and 6 [8]. In the limit Sx — oo, the kill signal be-
comes instantaneous. If §x is finite, this reproduces
the piin = 1 limit in the first kill-signal model.

Figure 3a illustrates the population dynamics of V'
and K for a particular set of parameters for which V'
is above the epidemic threshold: 6§ = 1.0, 8 = 5.0,
6k = 0.1, and Bx = 0.5. Thus px = p = 0.2, but
the life cycle of K is ten times slower than that of V.
In the absence of the kill signals, the fraction of nodes
infected with the virus in equilibrium would have been
1—p = 0.8. The kill signals strongly suppress the equi-
librium virus population — by a factor of nearly 16 in
this example. The predator-prey oscillations and high
initial peak in the fractional virus population could be
quelled by making Sx much larger. In a practical sit-
uation, one might also wish the kill-signal population
to be fairly low; this could be achieved by making 6x
larger (at the expense of increasing the equilibrium
virus population).

What is the effect of kill signals in non-
homogeneous topologies? In sparse topologies, epi-
demics can be eliminated entirely, as illustrated by the
simulation run shown in Fig. 3b. In this case, all para-
meters are the same as in Fig. 3a, but the topology is
a random graph of 10,000 nodes with average degree
2.0. After a short-lived growth spurt, the virus pop-
ulation becomes extinct near ¢t = 16.4. Their supply
of viruses having run out, the kill signal population
decays exponentially due to the death rate 0, and
becomes extinct near ¢ = 89.1. In all 200 simulation
runs that were conducted under these conditions, V
and K never came close to surviving up to the time
limit ¢ = 1000. Thus it appears that the sparsity of
the graph has plunged the system below the epidemic
threshold.

In local topologies, kill signals introduce some in-
teresting new effects. Fig. 3c shows the populations of
V and K for a typical simulation run on a 100-by-100
square lattice (wrapped around in both dimensions to
form a torus). Each node (vertex) of the lattice is only
able to infect its eight nearest neighbors. Although the
rates 5 and § are identical to those used in the other
two topologies presented in Fig. 3, the population dy-
namics are remarkably different. Initially, the popu-
lation growth of V and K are quadratic rather than
exponential. This is in accord with previous studies
which did not include the kill signal [6], in which it
was found that the virus population grew as t” in a
D-dimensional lattice (¢ represents time). However,
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Figure 3: The effect of various topologies on the population dynam-
ics of viruses and kill signals: a) homogeneous mixing model, b)
10000-node random graph with d = 2.0, and c) 100-by-100 square
lattice wrapped around to form a torus. The rates are § = 1.0,
B = 5.0, 6k = 0.1, and Bk = 0.5 in all cases. The homogeneous
mixing curves are numerical solutions of a coupled pair of differen-
tial equations in which the initial fractional populations of V and
K were 0.0001 and 0.0, respectively. The 2-D square lattice and
random graph curves were obtained from typical simulation runs in
which initially just one node (out of 10000 total) was occupied with
V and none with K. (Recall that a K is born whenever a V dies.)



after a while, large undamped oscillations develop in
the populations of V and K, and they are centered
at a value which is substantially lower than in the ho-
mogeneous topology. Large undamped oscillations are
not peculiar to spatial topologies; simulations on other
topologies suggest that this phenomenon is generally
characteristic of local topologies. Locality allows sep-
arate pockets of V and K to periodically develop, in-
teract, separate, and then interact again [7).

These theoretical results on kill signals are excit-
ing because they suggest a very cost-effective tech-
nique for thwarting viral spread. A number of differ-
ent implementations can be considered, including user
education (getting people to tell their friends if they
discover a computer virus) and organizational policies
which encourage users to report virus incidents to a
central agency, which can then ensure that machines
in the vicinity of the infected machine are scanned for
viruses (and cleaned up if necessary). We are cur-
rently examining the feasibility of a technological im-
plementation of kill signals for use in networks and
other multi-user systems.

3.2 Viral Spread in Organizations

The second new model views viral spread from the
perspective of an organization. This establishes a con-
nection between important theoretical parameters and
quantities that we can (and have) measured in our
studies of virus incidents. In addition, it suggests an
important strategy for limiting viral spread within or-
ganizations.

From an organization’s perspective (Fig. 4), the
world is full of computer viruses that are continually
trying to penetrate the semi-permeable boundary that
segregates the organization from the external world.
At a rate depending on the number of computer virus
infections in the world, the number of machines in the
organization, and the permeability of the boundary, a
computer virus will sooner or later make its way into
the organization. This marks the beginning of a virus
incident. After the initial penetration, the virus may
spread among several other machines within the or-
ganization. Eventually, some user will discover that
his machine is infected, and take steps to eliminate it.
In the ideal case, that user will also inform either his
neighbors or some central agency, which will then look
for the virus on neighboring machines. The incident
terminates when all machine infections stemming from
the initial one are cleaned up.

An organization should have two goals: to limit the
influx of viruses and to limit internal spread whenever
a virus does manage to penetrate the organizational
boundary. Centralized reporting and response can
provide much valuable information about these two
aspects of the organization’s success in dealing with
the virus problem. The number of incidents reflects
the success of the organization in filtering out infec-
tious contacts with the external world. It can also be
used to infer the relative trends in virus prevalence
in the external world, provided that the organization
or collection of organizations being monitored is large
enough to yield decent statistics. We shall carry this
out in Section 4. The average incident size (the num-
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Figure 4: Computer virus spread from an organization’s perspec-
tive. White circles represent uninfected machines, black circles rep-
resent infected machines, and gray circles represent machines in the
process of being infected. Throughout the world, computer viruses
spread among PCs, many of them being detected and eradicated
eventually. Left: Occasionally, a virus penetrates the boundary sep-
arating the organization from the rest of the world, initiating a virus
incident. The frequency with which this occurs depends upon the
fraction of infected machines in the world, the number of machines
in the organization, and the success of the organization in filtering
out infectious contacts with the outside world. Right: The infec-
tion has spread to other PCs within the organization. The number
of PCs that will be infected by the time the incident is discovered
and cleaned up (the size of the incident) depends upon inherent
characteristics of the virus and the effectiveness of the organiza-
tion’s anti-virus policies, particularly the extent to which anti-virus
software is being used.



ber of infected machines per incident) reflects the or-
ganization’s success in limiting the spread of viruses
once they get into the organization. The next two
subsections treat these two characteristics of virus in-
cidents from a theoretical point of view.

3.2.1 Viral Influx

Let us consider the relationship between world-wide
virus prevalence and the number of virus incidents ob-
served in a large sample population as a function of
time.

If the number of machines in the organization and
the permeability of the organizational boundary re-
main constant, the number of incidents per unit time
I(t) is proportional to the number of infected machines
in the world (at least the part of the world with which
the organization comes in contact). However, all that
a central reporting agency can record is Ips(t), the
number of incidents observed per unit time.

If the 6 and B are reasonably constant with time,
the observed incident rate I ps(%) is related to the ac-
tual incident rate I(t) via

Lons(t) = /0 ” QI - 1) @)

where Q(t) is the probability density for the incident
duration to be t. To a rough approximation, I ps(t) =
I(t — @), where @ is the average incident duration. In
other words, Iohs(t) is approximately a time-delayed
version of I(t).

The assumption of constant § and [ usually
holds, but was violated severely during the period of
Michelangelo Madness, as we shall show in Section 4.
In the future, more sophisticated theories may in fact
allow us to estimate @ from incident statistics taken
in the months surrounding March 6, 1992, the much-
publicized trigger date of the Michelangelo virus.

3.2.2 Internal Spread

We can get some insight into the second issue — that
of internal spread — by the following simple model.

Let us assume that central reporting and response
are perfectly effective, so that an incident is com-
pletely cleaned up as soon as any machine is found
to be infected. We wish to know:

1. How many machines are typically infected
before the incident is discovered and cleaned
up (i.e. what is the distribution of incident
sizes and its average)?

2. What is the average duration of an incident,
both in general and as a function of the inci-
dent size?

To make the problem tractable, let us assume that
homogeneous mixing applies within the organization.
Then, an excellent approximation to the distribution
of incident sizes can be derived as follows. Suppose
that a virus has infected a machine in an organiza-
tion, and that after some period of time the number

of infected machines stemming from this initial event
is n. The next event will be either a birth (resulting in
n + 1 infections) or a death (resulting in O infections,
assuming that the clean-up is instantaneous and con-
temporaneous with detection by one of the machines).
The rate at which deaths occur is simply né, and the
rate at which births occur is n(1 — n/N)g3, where N
is the total number of machines in the organization.
Thus the probability of going from n infections to n+1
infections is

(1-n/N) 1
n— = ~ 3
Prn—n+1 A-n/N)+p 1+p (3)
with the approximation being valid to the extent that
n < N. Then the probability that an incident will

be discovered and cleaned-up after n machines are in-
fected is:

i=n—1

P(n) = (1= pnont1) [ piminr ™ {

p

i=1

Thus the size distribution is very nearly exponen-
tial, with mean u given by:

u:ZnP(n)z1+,—1) (5)

which is valid provided that pN > 1 (or equivalently
pu < N). Previously, we found that in the absence of
centralized response, an epidemic can occur if p < 1.
However, Eq. 5 shows that, given perfect centralized
response, the average incident size is < N even when
p < 1, provided that p is not so small as O(1/N).

Note that, if the average incident size is less than
two, the organization is below the epidemic threshold,
and viruses would not propagate much even if central
response were suddenly eliminated. However, if the
average incident size is greater than two, the organiza-
tion is intrinsically above the epidemic threshold, and
elimination of central response would make the orga-
nization highly susceptible to widespread propagation
of any virus that happened to enter it.

As a first step in deriving the distribution of in-
cident durations, we can calculate the probabilities
p(n,t) for there to be n infections at time ¢. Suppose
that there are n infected machines at time ¢. Then
the probability per unit time of making a transition
to n + 1 infected machines is Rp—nt1 = Bn(l — ).
The probability per unit time of discovering the virus
on one machine (and thus making an instantaneous
transition to 0 infected machines) is R, = én. From
these considerations we obtain the coupled differential
equations:

dp(n, t)
dt

= —p(n, t) [Rn—>n+1 + Rn-—‘O] +

p(n—1,t)Rn_1_sn, (6)

valid for n > 1. p(0,t) can be obtained either from
the rate equation:



dp(0,¢) _
2 =3 p(n,t)6n )
n>1
or the normalization condition:
p(O,t) =1- Zp(nat)' (8)
n>1

Typically, we are interested in solving Eq. 6 given the
initial condition p(1,t) = 1; p(n,t) =0, n # 1.

If we make the approximation n < N, we can solve
Eq. 6 analytically. Consider the equation for p(1,):

B o, 1)8+4). (9)

Given the initial condition p(1,0) = 1, we immedi-
ately obtain:

p(1,t) = em (7o (10)
The equation for p(2,t) is:

dpsii’ Do p@nRE+ O+ LY. (1)

Using the method of integrating factors and the ini-
tial condition p(2,0) = 0, we obtain the solution:

t
p(2t) = /0e"(‘”’)‘t“‘)ﬂp(l,tl)dtl

B - -
= 353 [1_6 (ﬂ+6)t]e B+ (19)

In general, the solution for p(n,t) can be expressed
as a convolution involving p(n — 1,¢):

t
pt) = [ PO 1)ppn— 1,0t

0

[% [1- e-(f’”)t]]n_l e~ (P40 (13)

as can be shown by induction. To obtain p(0,t), we
can insert Eq. 13 into the normalization condition
given by Eq. 8. Summing the resulting geometric
series, we obtain:

61— e~ (B+)t)
p(0,t) = FFY=Cn (14)

It is straightforward to verify that this solution for
p(0,1) also satisfies the rate equation (Eq. 7). As one
would expect, p(0,t) increases monotonically from 0
at ¢ =0 towards 1 as t — oo.

Having obtained analytic formulas for the probabil-
ities p(n,t) of n infections at time ¢, we can now use
them to calculate several quantities of interest. As a

simple warmup exercise, we can calculate the distri-
bution of incident sizes, which was derived earlier by
another method. The probability for there to be n
infections at time t followed by a transition to O in-
fections at some time #' in the infinitesimal interval
t <t < t+ Atis p(n,t)énAt. Integrating over all
possible “extinction” times ¢, we obtain the probabil-
ity P(n) that the incident size was n:

P(n)

/ dtp(n,t)n
0

P 1
= ——n / dzz™!
1+p)" Jo
P
= — (15)
(1+p)"
in agreement with the result given by Eq. 4. (The sub-
stitution [1 — e~(#+9*] — 2 was made in going from
the first line to the second in the above derivation.)

The duration distribution Q(n,t) for an incident of
size n is simply the extinction time distribution nor-

malized such that [;° dtQ(n,t) = 1 for all n:

Q(n,1)

Il

Br(1+ p)*p(n,t) (16)
(B+6)n [1 - e—(5+5)t] n-l o~ (B+0)t.

I

To obtain the average duration @(n) of an incident of
size n, we need to solve the following integral:

Q) / ~ dt1Q(n, )

1 1
e 2T an

For sufficiently large n, Eq. 17 is approximately

Q) ~ 5 [+ o] 09)

where v = 0.57721... is Euler’s constant. Thus the
expected duration of an incident scales logarithmically
with its size. This can be attributed to the exponen-
tial growth in the number of infections with time, a
hallmark of the homogeneous approximation.

To obtain the overall duration distribution Q(t), we
can average the distribution Q(n,t) over all incident
sizes n (using the weighting factor given by Eq. 4).
Alternatively (and more simply), we can note that

op = 20

_ B+6
T |6+ Be—(B+o)t

2
] be~ B+t (19)



Finally, the overall average duration @ is given by:

_ NP
Q = ZWQ(")

(20)

In the above derivation, the order of summation was
switched in going from the first line to the second,
and the fourth line was obtained from the third by
identifying the Taylor series expansion for In(z). Of
course, the same result could have been obtained by
performing the integral Q@ = [ d¢tQ(t).

The rates § and 6 figure prominently in the various
expressions for probability distributions and averages
of the incident size and incident duration. By measur-
ing the average incident size p in a particular organi-
zation with good central reporting and response, we

might hope to use Eq. 5 to estimate p = % in that or-

ganization. In order to estimate 3 and § separately, we
could combine this estimate of p with a measurement
of the average incident duration and use Eq. 20.

For several reasons, such an exercise might be dif-
ficult. Although data on the incident size distribution
can be collected (see Section 4), data on incident du-
rations are very difficult to obtain because it is hard to
tell when an incident began. In addition, there are sev-
eral idealizations in this particular model that may not
reflect the real world. In principle (if they can be mea-
sured), the various probability distributions derived in
this section can be used as independent checks of the
validity of the approximations made. For example,
in a population of individuals in which 8 and § vary
somewhat from one individual to another, we might
expect the distribution of incident sizes to deviate
from the exponential distribution predicted by Eq. 4.
Indeed, as will be seen in the next section, the incident
size distributions of our sample population exhibit a
non-exponential tail. Another potential difficulty is
the use of the homogeneous-mixing approximation in
deriving these results. In the future, simulations will
be used to assess the degree to which topology alters
the theoretical results of this section. We expect the
results for incident duration to be affected significantly
because they appear to contain quantities associated
with exponential growth. The results for incident size
may be somewhat less affected, because they do not
depend on the time scales involved.

Thus, a model based on the organizational perspec-
tive has the potential to help us measure important
theoretical parameters, but attempts to do so now are
probably premature. In the future, by incorporating
topological and other effects into the theory and by

finding ways of measuring either the average incident
duration, 3, or §, we should be able to tie many at-
tributes of virus incidents together and to estimate
parameters that will help us predict virus spread on a
global scale.

An additional point should be rescued from the
morass of equations and emphasized very clearly here.
Central reporting and response appears to be a power-
fully effective policy. Even if an organization is intrin-
sically above the epidemic threshold, central reporting
and response prevent the incident size from scaling
with the number of machines in the organization. Not
only do incidents remain small; their duration is finite
(rather than infinite). As will be seen in the next sec-
tion, our virus prevalence statistics also suggest that
organizations should adopt this policy.

4 Virus Prevalence Statistics

For several years, we have collected statistics on
virus incidents in a well-monitored population of sev-
eral hundred thousand PCs as they occurred. For each
incident, we recorded where and when it was reported,
the number of infected PCs and diskettes, and the
virus involved. As could be inferred from Section 3.2,
this method requires that the population under obser-
vation possess three important characteristics:

1. Anti-virus software in regular use by users.
Users must have the means to determine if
they are infected. If they are, they must have
a reliable way of determining the identity of
the virus.

2. Educated users. Users must know what
viruses are, how to use anti-virus software,
and to whom they should report an infection
if they discover one.

3. Central reporting. There must be a cen-
tral reporting facility that collects informa-
tion about virus incidents.

The particular sample population that we have chosen
to study is international, but biased towards the U.S.
It is stable, both in makeup and in size. We believe
it to be typical of Fortune 500 companies possessing
the three important characteristics cited above, plus
active central response to incidents.

Of course, these characteristics are not typical of
many other environments, so some of our results
may not be representative of universities, home users,
and other businesses which lack these characteristics.
Nonetheless, from our observations of this population
we are able to infer much about worldwide computer
virus prevalence, as was explained in Section 3.2.1.
We believe that our statistics provide the most ac-
curate picture of virus prevalence that has yet been
obtained *.

4For a detailed critique of other attempts to gather statistics
on virus prevalence, see references [4] and [5].



4.1 Incident Size Distribution

First, we present some interesting results on the
distribution of incident sizes in our population which
support our theoretical conclusion that central report-
ing and response can be quite effective. Fig. 5a shows
the distribution of incident sizes during a six-month
period when the above-mentioned anti-virus strategies
were first being deployed in the various components of
our sample population.

8) Incidents (pre-1991)

b) PCs (pre-1991)

Figure 5: a) Fraction of incidents of given size during six-month
periods when strategies were first being deployed. b) Fraction of
infected PCs involved in incidents of given size during the same
time period.

a) Incidents (1992) b) PCs (1992)

Figure 6: a) Fraction of incidents of given size during 1992. b)
Fraction of infected PCs involved in incidents of given size during
1992.

During this period, the average incident size was 3.4
PCs. Most (63%) of the incidents involved just zero
or one PCs. (The incident size is defined to be zero
if a foreign diskette is caught before it can infect any
of an organization’s PCs.) Only 12% of the incidents
involved more than 5 PCs. However, Fig. 5b presents a
different view of the same data. Even though incidents
larger than 5 PCs were fairly rare, they accounted
for 60% of the total number of infected PCs. Thus
the larger incidents actually accounted for most of the
problem! Fig. 6 shows the corresponding distributions
for 1992, after the anti-virus strategies had been in
place for some time. The average incident size was
cut by more than a factor of two to just 1.6 PCs. In
the vast majority of cases (83%), the infection was
caught before it could infect more than one PC. Only
2.5% of the incidents involved more than 5 PCs, and
these large incidents accounted for only 27% of the
total number of infected PCs.
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It should be noted that these incident size distrib-
utions do not have the exponential form predicted by
Eq. 4. For example, for the 1992 data, the average in-
cident size of 1.6 leads to an estimated p = 1.67 (using
Eq. 5.) (To the extent that the approximations of Sec-
tion 3.2.2 are valid, the fact that the average incident
size is less than two indicates that the population as
a whole is intrinsically below the epidemic threshold.)
For an exponential distribution with this average, the
percentage of incidents involving no more than 1 PC
should be 62.5%, the percentage involving 2 to 5 PCs
should be 36.8%, and the percentage involving more
than 5 PCs should be just 0.7%. The percentages that
were actually observed were 83.0%, 14.5%, and 2.5%,
respectively. Thus the tail of the distribution is no-
ticeably longer than exponential. This may be due
to a certain amount of variation in the 8 and 6 rates
among the various members of the sample population.

In any case, the net effect of the anti-virus policies
introduced a few years ago was to create a more hos-
tile environment for computer viruses, reducing the
average incident size by a factor of two in this in-
stance. In organizations which have not yet imple-
mented active response policies, we can expect the av-
erage incident size to be larger than the 1.6 PCs that
we have attained. As a check on this, we have been
able to compare our results with those obtained by
Dataquest [3]. Unfortunately, the question they asked
their survey participants confused the distinction be-
tween incidents and infected machines. However, by
making some assumptions about how the survey par-
ticipants interpreted the question [4, 5], we find that,
in the third quarter of 1991, the average incident size
among the organizations surveyed by Dataquest was
roughly between 2.4 and 3.2. This is reasonably close
to the figure of 3.4 PCs that we observed in our popu-
lation when anti-virus policies were just being put into
place.

We are aware of some conscientious organizations
not included in our sample population which, despite
having purchased a site license for anti-virus software,
suffer from persistent, chronic infections. These orga-
nizations appear to be above the epidemic threshold.
The theoretical results of Section 3.2.2 indicate that,
by implementing central reporting and response, these
organizations could bring virus incidents to a swift ter-
mination without doing anything to change 3 and 4.

4.2 Worldwide Virus Prevalence

In the remainder of this section, we shall look at
statistics which typify not just our sample population,
but which also reveal much about virus prevalence in
the world as a whole.

We have maintained a current collection of known
viruses by working cooperatively with other virus col-
lectors. At any given moment in time, the number
of viruses for which we have signatures in our virus
scanner is a conservative estimate of the number of
different viral strains in the world. The number of
viruses which are actually spreading is taken to be the
number of viruses that we have seen in at least one
actual incident.

Figure 7 shows that the number of different viruses
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Figure 7: Number of viruses known to us (those we have collected
and analyzed) and number of viruses “in the wild” (observed by us
in actual incidents) as a function of time.

that have been written has grown dramatically during
the last four years. So far, it has been growing at
a roughly exponential rate, doubling approximately
every 7 months. During the last two years, the num-
ber of viruses that we have seen in real incidents has
consistently been approximately 15% to 20% of the to-
tal number in our collection, and a majority of these
have only been seen once or twice. We suspect that
a significant portion of the viruses which have been
seen rarely or never are below the epidemic threshold.
Others have just been unfortunate so far, and might
conceivably get a lucky break someday that will enable
them to spread appreciably °.

Figure 8 emphasizes the point that a few viruses ac-
count for many, but certainly not all, of the observed
incidents. The ten most common viruses accounted
for 67% of the incidents, with the remaining 33% be-
ing distributed among 91 different viruses, over half of
which were seen only once. A number of other viruses
that we have seen in previous years were not observed
at all during 1992. This leaves well over 1000 viruses
in our collection that we have never observed at any
time. It is interesting to note that the relative mar-
ket share of the top two viruses has been declining
steadily. In 1990, the Stoned and 1813 (Jerusalem) to-
gether accounted for 51% of all incidents. In 1991, this
dropped to 34%. In 1992, Form supplanted 1813 as
the second-most common virus; the Stoned and From
viruses together accounted for just 28% of the ob-
served incidents. This decrease is not due to decreased
prevalence; it is due to the fact that new viruses are
continually entering the field. Some of these newcom-
ers, notably Joshi and Form, are proving to be rather
successful. Other new viruses are seen only rarely, but
there are so many of them that the fraction of incidents
in the “Other” category is growing rapidly.

5Recall from Section 2 that viruses which are above the
threshold can still die out if they fail to get a good start in
life.
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Figure 8: Relative frequency of incidents involving the most com-
mon viruses during 1992.

Figure 9 shows the observed incident rate of the
five most common viruses of 1992 as a function of
time. Except for the first half of 1992, it can also
be taken to be the relative frequency of these viruses
in the world as a whole. (During the first half of 1992,
the Michelangelo scare caused an anomaly which dis-
turbed the proportionality between observed and ac-
tual incidents; this will be discussed in Section 4.3.)

If we restrict our attention to the fourth quarter of
1991 and earlier (in order to avoid the confusion of the
Michelangelo effect), a common pattern is evident in
Fig. 9. Viruses appear to increase in prevalence at an
approximately linear rate for a period of six months to
two years, and then plateau at a very low level. Some,
such as 1813, appear to decline after a relatively stable
period. Bouncing Ball (not shown) had been in appar-
ent equilibrium for several years, perennially appear-
ing in the list of the 5 most common viruses; during
1992, its prevalence declined precipitously, to about
one fourth of its former equilibrium level. This may
indicate that viruses like 1813 and Bouncing Ball have
fallen below the epidemic threshold, possibly because
anti-virus software is being used more widely than it
had been. The Brain is a prime example of a virus
which is nearly extinct.

The viruses which are increasing in prevalence
are clearly above the epidemic threshold, but their
strongly sub-exponential spread rate points to highly
localized software sharing. The ones which are approx-
imately stable in prevalence are apparently in equilib-
rium. It is somewhat surprising that the equilibrium
is at such a low level: approximately 0.2 incidents per
1000 PCs per quarter for Stoned, the most prevalent
virus, at the end of 1991. To estimate the number of
infected machines that this represents, we must mul-
tiply this figure by the average incident size for the
world. Not knowing the extent to which most organi-
zations are protected against viruses, this is difficult
to estimate, but in any case it is clear that the fraction
of the world’s machines which are infected with any
particular PC-DOS virus is exceedingly small. If we
accept the simple theory of Section 2, this can only be
explained if the birth rate is infinitesimally larger than
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Figure 9: Number of incidents involving five of the most common
viruses as a function of time. The units (incidents per 1000 PCs
per quarter) pertain to our sample population only, but the curves
should also be reasonable estimates of the relative worldwide preva-
lence of each virus. The data points are bracketed by bars indicating
the statistical sampling error that one would expect given the num-
ber of observed incidents. (The bars do not represent errors in the
measured data.)
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the death rate. This seems very unlikely, especially
since several viruses are apparently above threshold,
but none have become very prevalent.

We suspect that a combination of two factors is de-
creasing the equilibrium. First, kill signals are prob-
ably operating informally, i.e. some people tell their
friends when they discover that they are infected. De-
pending on the assumptions that one puts into the the-
oretical kill signal models of Section 3.1, this can de-
crease the equilibrium infection rate by a very substan-
tial factor. Second, it is conceivable that, when some-
one experiences a computer virus, or hears that some-
one they know became infected, they become more
vigilant. Unlike biological diseases, exposure to one
computer virus can actually confer immunity against
nearly all computer viruses. As was mentioned in Sec-
tion 3.1, such an immunization effect can also be ac-
commodated within the kill signal model by setting
0k = 0. This would also help to explain an extremely
low equilibrium level of computer virus infections.

It should be noted that our observations completely
contradict the predictions made by Tippett [2]. In
March, 1990, he predicted that by March, 1992 there
would be approximately 8 million infected PCs in the
world — an 8% infection rate. He claimed that the
1813 (Jerusalem) virus would continue to double in
prevalence every 1.5 to 2.6 months. In fact, according
to Fig. 9, its prevalence remained remarkably stable
over a long period of time following that prediction,
and today it appears to be declining. He also predicted
that, for any virus, exponential growth would continue
until approximately 20% of the computer population
was infected, after which its prevalence would continue
to increase at a slower rate. Note that, even for those
viruses in Fig. 9 which have increased in prevalence, it
would be difficult to claim that the growth has been
ezponentiall We attribute this to highly localized soft-
ware sharing, as was described in Section 2.

Figure 10 shows the incident rate from all viruses
as a function of time in our sample population. It
can also be interpreted as the relative frequency of all
viruses in the world as a whole. (Again, this is not the
case during the first half of 1992 for reasons that will
be explained in Section 4.3.) During the last quarter of
1991, about 0.1% of the PCs in our sample population
became infected by some external source.

This small but rising increase is due to two separate
factors. First, some individual viruses are becoming
more prevalent. Second, there has been an increase
in the number of different varieties of successfully-
spreading viruses (e.g. the Joshi, which as shown in
Fig. 9a first appeared in our sample population in late
1990). It should be recognized that the statistic shown
here is distinct from that presented in Figs. 7 and
9, and can be thought of as a somewhat complicated
combination of the two of them.

It is interesting to calibrate our measurements
of the total virus incident rate against those of
Dataquest [3], which sampled a much greater diver-
sity of organizations. Unfortunately, a direct compar-
ison with their results is not possible because they
reported the percentage of organizations which expe-
rienced at least one incident during given time inter-
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Figure 10: Total number of virus incidents in sample population
as a function of time. The units (incidents per 1000 PCs) pertain
to our sample population only, but the curve should also be pro-
portional to the worldwide prevalence of all computer viruses as a
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ber of observed incidents. Estimates derived from the raw survey
data collected by Dataquest are displayed as well.

vals. The organizations ranged over more than two or-
ders of magnitude in size. However, by re-examining
the Dataquest raw data, and taking into account the
distribution of organization sizes, we have been able
to de-convolve their results so as to provide an es-
timate of the number of incidents per 1000 PCs [5].
The Dataquest rate of approximately 0.81 incidents
per 1000 PCs for the third quarter of 1991 is in the
same range as our own observation of 0.90 incidents
per 1000 PCs for that quarter. This suggests that the
incident rate within our sample population is roughly
the same as that in the rest of the world (at least the
portion of the world sampled by Dataquest — North
American businesses and educational and governmen-
tal institutions.) This is consistent with the fact that
our sample population is not taking any unusual pre-
cautions to prevent viruses from penetrating the or-
ganizational boundary; the special anti-virus policies
that were instituted a few years ago are designed to
limit the size of incidents, not their frequency. The
fact that the Dataquest data for the year 1990 is con-
siderably lower than ours may indicate fading memory
on the part of the survey respondents (who took the
survey in October 1991), or a lesser awareness of the
virus problem during 1990 than during 1991.

4.3 The Michelangelo Effect

The anomalous peaks in Figs. 9 and 10 in early
1992 require an explanation. Our data collection was
strongly perturbed during that time by a very pecu-
liar event: Michelangelo Madness €. Although this
perturbation has greatly complicated the interpreta-

6 A particularly virulent form of March Madness, transmitted
via casual exposure to newspapers or the evening news. Typ-
ical symptoms include hysteria, acute panic, and last-minute
purchases of anti-virus software.
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tion of our data, our struggle to cope with it has been
instructive.

Figure 11 shows the number of observed incidents
during two-week periods in 1992 for the Michelangelo
and Stoned viruses, and for the total over all viruses
except for these two. A quick glance shows that all
three trends have approximately the same shape: a
sharp rise to a peak on the two-week period ending on
March 6, followed by a dip that bottoms out during
April and a gradual recovery towards the rate that
prevailed at the beginning of the year.
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Figure 11: Number of virus incidents reported per 1000 PCs for
Stoned, Michelangelo, and all other viruses during two week peri-
ods ending with the indicated date. The dashed line indicates the
incident rate for all viruses other than Stoned and Michelangelo
during the fourth quarter of 1991 (normalized to a two-week period
by multiplying by ).

This behavior is completely at odds with the be-
havior in Figs. 9 and 10, in which dynamical trends
occurred on much slower time scales. Furthermore, it
is difficult to believe that the actual incident rate of
Michelangelo, Stoned, and the sum total of all other
viruses just happened to undergo a huge fluctuation
in unison.

There is a simple explanation. In fact, the actual
incident rate was not fluctuating as wildly as the ob-
served incident rate shown in Fig. 11. We can sur-
mise from this data that, about a week or two be-
fore March 6t (the date on which Michelangelo was
slated to damage the file system on hard disks), many
users both inside and outside our sample population
decided to scan their disks because they were con-
cerned about being infected with Michelangelo. Since
incidents were discovered sooner than they ordinarily
would have been, there was a short-lived but dramatic
peak in the observed incident rate. This depleted the
reservoir of infection in our sample population, result-
ing in a noticeable dip in the observed infection rate
during April, by which time the scanning rate had
most likely returned to normal. This also explains the



similarity in shape of the three curves in Fig. 11. In the
course of scanning, a user would naturally have found
any virus that happened to be on his or her system.
One further anomaly should not be surprising in the
light of our explanation: during the four weeks prior
to March 6%, eleven new viruses were seen for the first
time in our sample population — a record high.

In slightly different terms, our usual assumption
that the observed incident rate lags the actual inci-
dent rate by some constant amount (the average in-
cident duration) broke down for the first time due
to a sudden, pervasive, but temporary alteration in
user behavior during late February and early March
of 1992. We are currently trying to refine the theo-
retical analysis presented in Section 3.2.1 in order to
help disentangle two effects:

¢ An actual reduction in the world’s computer
virus population (and hence the actual in-
cident rate) due to scanning by users all
around the world.

e The boom and bust in the observed incident
rate due to scanning by users in our sample
population.

If we succeed, we will be able to determine the extent
to which the world’s computer virus population was
set back by Michelangelo. In addition, we may be
able to estimate the average lag time @, and hence 3
and 6 for several of the most prevalent viruses.

In the aftermath of Michelangelo, the equilib-
rium level of infection for common viruses such as
Stoned and 1813 appears to have dropped significantly
(Fig. 9), as has the total virus incident rate (Fig. 10).
Michelangelo Madness had a salutary effect on the
world’s virus population, perhaps reducing it by a
factor of two overall. However, one would wish that
this reduction had been achieved by more orderly, less
costly means. We believe that our two-pronged (sta-
tistical and mathematical) epidemiological approach
can help us devise more sensible ways to achieve even
more dramatic reductions in worldwide virus preva-
lence.

5 Conclusion

A mutually-supportive combination of theory and
observation has enabled us to infer much about com-
puter virus prevalence and the factors which influence
it.

Computer viruses are considerably less prevalent
than many have claimed. The rate of PC-DOS virus
incidents in medium to large North American busi-
nesses appears to be approximately 1 per 1000 PCs
per quarter; the number of infected machines is per-
haps 3 or 4 times this figure if we assume that most
such businesses are at least weakly protected against
viruses. Businesses with virtually no anti-virus pro-
tection can probably expect a higher rate than this,
but we have no data on which to base an estimate.

Gradually, computer viruses are becoming more
prevalent. This is not because any one viral strain
is getting out of hand; it is because the number of
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different viruses is growing with time. Most viruses
that are written appear to be below the epidemic
threshold. Of the ones that we have seen, just a
small minority account for a substantial majority of
the incidents. The ones that are most successful
seem to increase in prevalence for a year or two at a
strongly sub-exponential rate (approximately linear!)
and then level off at a very low level of incidence.
This qualitatively slow spread rate indicates that soft-
ware exchange is highly localized. It is good news for
known-virus technology; it means that updates can be
sent out less frequently than would be required if the
growth rate were exponential. Even more so, it is very
good news for all PC users, who should be thankful
that previous predictions of exponential growth were
so far off the mark.

Furthermore, previous claims about the ineffective-
ness of virus scanning are discredited. Simple epi-
demiological models show that, by increasing the virus
death rate sufficiently, one can push viruses below the
epidemic threshold. Virus scanners are an effective
way to increase the death rate, particularly if they are
designed such that they scan periodically without any
prompting from the user.

Finally, our observations and our theoretical analy-
sis of the effect of centralized reporting and response
suggest that this is an extremely effective way to man-
age the virus problem in organizations. We strongly
recommend the following policies to all organizations:

1. Make sure that users use anti-virus software.

2. Make sure they know what viruses are and
who to contact if they find one.

3. Make sure that the people they contact re-
move the reported infection (and others con-
nected with it) quickly.

These policies have helped to cut the average incident
size by more than a factor of two within our sample
population. Furthermore, the information collected
by the central agency can be used to assess the orga-
nization’s progress in dealing with the computer virus
problem.

Theoretical results on kill signals suggest that they
are highly effective in reducing the virus threat. In the
not-too-distant future, we plan to implement them in
networks of PCs.

As time passes, our knowledge and understanding
of the computer virus problem is bound to increase.
With more data, trends in computer virus prevalence
will become clearer. In addition, the theory will con-
tinue to advance in a number of directions. Currently,
we can only say that the topology of software exchange
among the world’s computers has a very important ef-
fect, and that the global trends appear to indicate that
it is highly localized. In order to make our theories
more quantitative and predictive, we must find ways
of characterizing the world’s topology. From user sur-
veys and automatic monitoring techniques, we hope
to obtain enough information about individual behav-
ior to be able to predict and to influence the future
course of computer virus trends within organizations
and throughout the world.
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